


## Habitats

#### • A habitat is the home of a species.

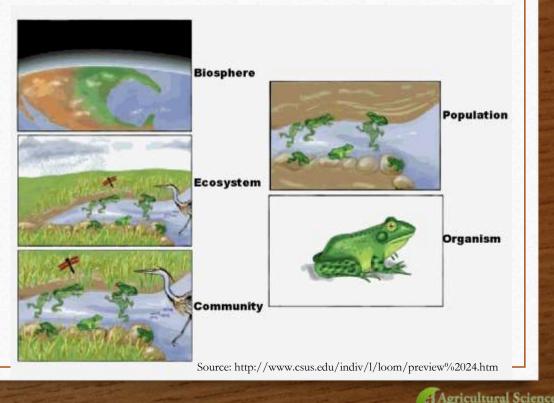
- Living organisms have evolved through natural selection over millions of years to a specific set of conditions.
- A living species cannot exist outside of an environment that supports these needs and adaptations.
- A <u>habitat</u> is an environment in which the specific needs of a living species are met.
- When a habitat is destroyed, changed, or degraded, the species that live there are affected.
  - Currently habitat loss/degradation represents one of the greatest causes of extinction on the planet today.



Agricultural Science

## The Needs of Species

All species depend on habitats for three things:


- <u>1. Shelter</u>: physical structures that a species lives near, around, on top of, or inside of.
  - It could be a specific structure as specific as a log, nest, or burrow.
  - It could also refer to <u>cover</u>, or the assortment of plants, rocks, water, decomposing matter, in which an organism can remain protected or hidden.
- <u>2. Physical needs</u>: water, food, oxygen, adequate temperatures, sunlight (plants), etc.
- <u>3. Space</u>: all living species have a limit to how closely they can be crowded. Living species need adequate space in order to have adequate access to the previously-listed components.
  - For example, too many trees in one area would limit their access to light and their ability to photosynthesize.
  - Too many animals in one area would result in starvation and disease outbreaks.
  - Every habitat has a <u>carrying capacity</u> for every kind of living species.



Agricultural Se

# Populations

- A <u>carry capacity</u> is the maximum population that can be sustainably supported by a habitat.
  - A <u>population</u> is a group of living organisms of the same kind living in the same place at the same time.
  - All of the populations of living species interact and form a community.
- A <u>community</u> is group of interacting living species sharing the non-living resources of a specific area
- The interaction of the living species of the community and the non-living resources is an <u>ecosystem</u>



## Niches

#### • Every living species occupies a niche, or particular *role* in a habitat

- E.g. bees fill a reproductive niche for flowers
- Wolves fill a predatory niche that improves the genetic quality of a herd of elk
- A habitat has a limited amount of niches to fill.
- Because of this, different kinds of interactions will occur between the living species of an environment in order to create the functional ecosystem.



anniekatec.blogspot.com

oricultural Se

### Kinds of Niches

- <u>Competition</u>: when multiple species compete for the same resources.
  - E.g. when multiple species of trees compete for space, sunlight, and the ability to reproduce.
- <u>Predation & Parasitism</u>: when one species benefits at the harm of another species.
  - E.g. when wolves attack a wounded deer; when mosquitoes suck blood from a person.
- <u>Mutualism</u> (or cooperation): when multiple species interact in a way that is beneficial to all involved.
  - E.g. humans and milking cows benefit from their cooperation (the humans get food, the cow gets cared for; note: neither are dependent on the other to exist).



## Kinds of Niches

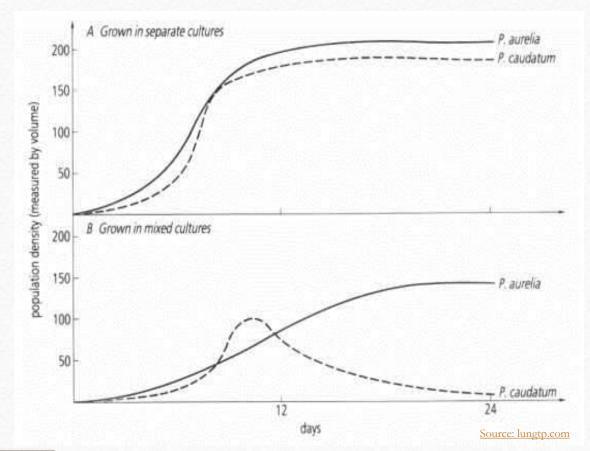
- <u>Symbiosis</u>: when two species cooperate to the extent that they each become completely dependent on each other
  - E.g. bacteria in a cow's rumen; both need each other to function one cannot survive without the other.
- Commensalism: when one species benefits without affecting another species.
  - E.g. when maggots decompose a carcass, the carcass was already dead and therefore is not affected.
- <u>Amensalism</u>: when one species harms another species without any gain or impact to itself.
  - E.g. pine needles reduce the ability of other plant species to grow by changing the pH of the soil.

# Competitive Exclusion Principle

- The <u>Competitive Exclusion Principle</u> states that if two competing species occupy the same niche in the same habitat, one species will eliminate the other over time.
  - This concept becomes very important when considering how a species will respond to a habitat disturbance (later slides).
  - For example, if an invasive species is introduced that occupies the same niche as a native species, the native species may be outcompeted and may go extinct in that particular habitat (especially if the invasive species has no predators).

#### • A species with a very narrow niche is called a specialist.

- Specialist species are usually dependent on a very small number of other species and/or on very specific environmental conditions.
- For example, spotted owls only live in the cavities of trees that are 200 years older or more if all old-growth trees are cut, the spotted owl cannot survive.
  - Many endangered species are threatened because they depend on a specific set of environmental conditions which are affected by human development.






Agricultural Science

### The Competitive Exclusion Principle.

- The graphs here show the results of the original 1930s Gause experiment where two single-celled paramecium species were grown in a media solution.
  - When two species that occupy the same niche are grown in separate optimal conditions, they will both thrive (top).
  - However, when those same species occupy the same optimal conditions, they will compete with each other, with one species becoming eliminated (bottom).



Apricultural Sci

#### Habitat Extinctions

- Specialist-niches occur because of the competitive exclusion principle if a species cannot specialize, they may be outcompeted by another species occupying the same niche.
  - An example of this are Darwin's finches those finches that survived did so because they were able to adapt to a specific food source.
    Adaptive radiation in Galapagos finches
  - Some species are able to adapt to many different environments. A species that can adapt to many different conditions is called a <u>habitat generalist</u>.
  - If a habitat generalist is introduced by human activity to a new habitat, the introduced species may eliminate an existing species from its niche.

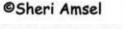


### Habitat Loss = Increase in Extinctions via CEP

- As habitats become smaller and more sparse, the impact of the Competitive Exclusion Principle increases.
  - As habitat is lost around the world, more species will compete for fewer resources, resulting in an increase in habitat-specific extinctions.
- As species become more scarce, the impact of the Competitive Exclusion Principle increases.
  - When resources are abundant due to high biodiversity, the effects of competition are less pronounced.
  - However, as biodiversity decreases and as ecosystem services become more scarce, the impact of the CEP is more likely to be observed.
  - This effect becomes even more observable with the introduction of non-native species who compete to occupy the same niche.



Agricultural S


### Succession

#### • Succession is the natural process of change and transition in a habitat

- E.g. a pond will eventually fill in with sediment to become a marsh. The marsh will eventually dry into a meadow. The meadow will become scattered with shrubs and then trees.
- Eventually a full forest will occupy the same area and may remain until it is destroyed by a major natural process (fire, flood, glacier, volcano, etc.)
- Succession occurs over thousands of years
  - It is a slow process that spans many generations of living species.

Plants Stage Shrub Stage Young Forest M First 5 years 6-25 years 26 - 50 years

Mature Forest 51 - 150 years Climax Forest 150 - 300 years



Agricultural Science

### Succession vs. Disturbance

- A <u>habitat disturbance</u> is when the normal function of a habitat is disrupted by an outside force.
  - This could be human-caused or could be the result of a natural disaster such as a tornado or fire.

#### • Succession is very different from human disturbance.

- Succession is slow and enables populations to move over time to new habitats that are more suitable.
- Disturbances reverse the process of succession, causing an ecosystem to revert to an earlier successional stage or even causing an ecosystem to change into a different type.

#### • Habitat destruction is the greatest cause of extinction.

• The more disturbances to a habitat, the greater the likelihood of extinctions to living species.





## Positive Effects of Disturbances

- Disturbances are a part of the natural cycle of a habitat.
  - Naturally-occurring disturbances are often a way to "re-set" the succession of a habitat.
  - For example, aspen trees rely on disturbances for their shade-intolerant seedlings to be able to compete for sunlight and nutrients.
  - Jack Pine trees depend on forest fires for their seed cones to open and disperse.
- Human disturbances tend to differ from natural disturbances largely on the basis of their length of impact.
  - While a forest fire or tornado causes damage, this damage tends to be rapid and temporary.
  - On the other hand, human-based disturbances such as pollution, invasive species, or outright habitat destruction (such as building a road or urban sprawl) tend to last much longer.
  - The prevents the eventual return of species that otherwise would have re-populated the habitat.

### Disturbances & Human Activity

#### • Disturbance is a natural part of all systems.

- All ecosystems undergo continuous pressures to change a disturbance is simply an impact that delays or partially reverses the process of succession.
- The disturbance may be very small (e.g. only affecting a small clump of trees) or large (e.g. a fire or tornado that destroys a large tract of forested area).
- It is important to understand succession & disturbances from a "resilience perspective".
  - <u>Resilience</u> is the ability of a habitat to return to its previous state after a disturbance occurs.
  - The greater the diversity of species and ecological processes, the more likely a system is to return into the type of system it was after it experiences a disturbance.
  - If native species and processes are lost, a landscape will be more likely to change into a different ecosystem as the result of a disturbance.

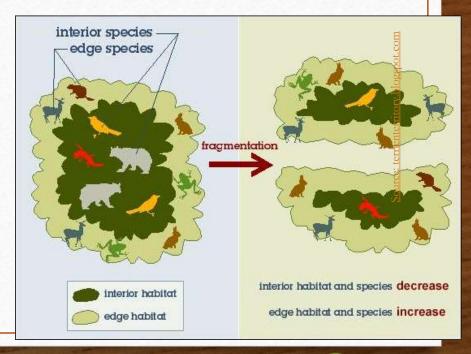


#### Resilience & Biodiversity

- When biodiversity is lost, habitats become less able to recover from disturbances.
  - Human activity can both increase the number of disturbances to an ecosystem as well as increase the damage to a habitat from each disturbance.
- One of the most direct indicators of whether a habitat is being negatively affected by a disturbance is biodiversity.
  - The greater the biodiversity, the healthier and more resilient a habitat tends to be.



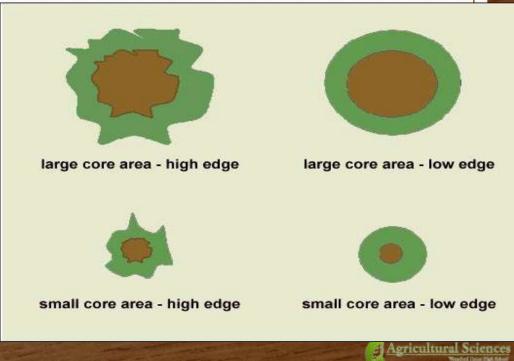
Agricultural Sc


### Measures of Habitat Health

#### • Another method for measuring overall habitat health is fragmentation.

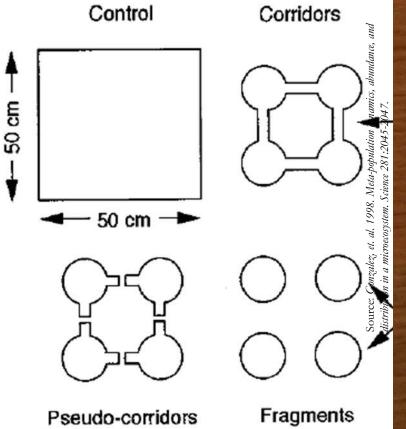
- <u>Habitat fragmentation</u> is when a large habitat is broken into multiple smaller isolated habitats.
- Biodiversity is maximized when habitat size is maximized. As habitats are reduced in size, biodiversity is also reduced.

#### • Habitat fragmentation has two components:


- <u>Patchiness</u> how many 'pieces' the habitat is broken into (fewer pieces are better than more).
- <u>Edge</u> how much border a habitat has (less edge for the same area is better than more).

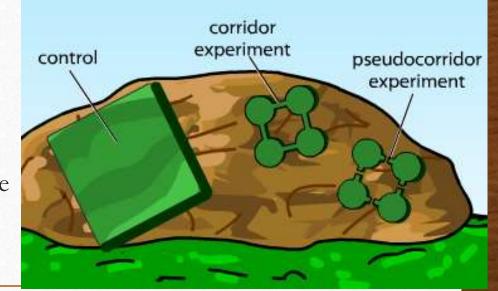


Apricultural S


## Detrimental Edge

- The habitat edge is usually the most altered and damaged portion of a habitat. For example...
  - Edge is the most likely to be affected by disease. E.g. Emerald Ash Borer
  - The edge has the greatest temperature changes
  - Edge has the most invasive species
  - Edge is the most affected by pollution
  - Edge is the most damaged in storms
  - Edge is the most likely to be lost in fire




## Mossy Rock

- For example, an experiment by Gonzalez, et. al. in 1998 (published in the research journal *Science*) sought to demonstrate the effects of edge and patchiness in fragmentation.
  - Gonzales' research team used mossy rocks to simulate what happens to habitats when they are fragmented.
  - These rocks served as a habitat for bacteria, fungi, algae, and insects.
  - The mossy rocks were sort of like micro-habitats but were affected by the same principles as much larger habitats (while being much easier to study).
- Before beginning the treatment, species richness and abundance were measured on different moss-covered rocks. Moss was then scraped off in one of four ways:
  - A) A large area of moss was left as one solid piece (this was the control).
  - B) The moss habitat was broken into smaller individual pieces.
  - C) The same area of moss was broken into smaller individual pieces connected by small corridors (a <u>corridor</u> is a strip that connects two habitats).
  - D) The same area of moss was broken into smaller individual pieces connected by small broken corridors.



# Mossy Rock

- After 6 months, species in the large fragments remained largely unaffected.
  - However, 41% of the species in the isolated patches and patches with broken corridors went extinct.
  - In the habitats with continuous corridors, only 14.5% of the species went extinct.
- Gonzalez's experiment showed that habitat fragmentation results in a nearly universal decline in the number of species in a habitat and in the populations of those species.
  - Even if the same amount of habitat is available, if that habitat is broken into pieces through fragmentation, native species will most likely go extinct.



Apricultural Sc.

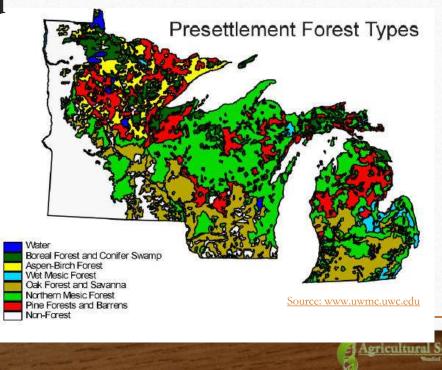
## Problems Created by Fragmentation

- <u>Populations decrease</u>: because there is less habitat available, the habitats have a lower carrying capacity.
- <u>Inbreeding</u>: because populations are isolated from each other, the availability of breeding mates is reduced, increasing the risk of inbreeding and loss of genetic biodiversity.
- <u>Increases of predators, parasites, and competitors</u>: as the amount of edge in a habitat increases, so does the exposure to species that reduce native populations.
- <u>Changes to the physical environment</u>: increases in edge also change the temperature, exposure to wind, rate of water loss, etc. of a habitat.
- <u>Elimination of species with large spatial requirements</u>: e.g. wolves and grizzly bears tend to depend on large tracts of unobstructed habitat.
- <u>Increased risk of extinctions</u>: all of these factors together contribute to an increased likelihood that species will be lost.



### Causes of Habitat Fragmentation

- Human Development: urban sprawl replaces habitats and corridors with houses and parking lots, but can also change the niche of a species.
  - For example, as human populations encroach on habitat in North America, species like deer and bear are more likely to become dependent on human activity for food.
- Road-building: roads affect biodiversity in the following ways:
  - They create barriers to movement of species, isolating breeding populations.
  - The create easier access to populations by predators.
  - They increase the spread of disease and invasive species.
  - They increase the likelihood of species loss by vehicle collision.
  - Areas the supply different needs to a species may be separated by the road (e.g. if a breeding ground and a feeding area are separated by a road, a species may be lost in that area).


Minimally disturbed development

ource: Metropolitan Washington Council of Governments

Agricultural Science

### Causes of Habitat Fragmentation

- Deforestation: when logging is performed by poorly-planned clear-cutting (especially if corridors are not provided), it can increase patchiness and edge while giving invasive species a chance to become established.
- Conversion: when natural habitats are converted for non-natural uses (including agriculture, pasture, developed parks, etc.).
  - For example, over 99% of North American prairies were lost since European settlement.
  - Most of this was converted to monocultural fields.



### Structure & Habitat Health

#### • Habitat health is not just a matter of size but also quality.

- A large habitat that lacks biodiversity can be as harmful as a small habitat with high biodiversity.
- For example, moose populations in eastern Canada were wiped out by clear-cut forestry. Research found that moose could not tolerate the loss of more than 0.5 square miles of their habitat (Peek).
- However, even the loss of a specific kind of species (without removing the rest of the vegetation) could cause losses in moose populations.
  - E.g. only removing coniferous trees was still harmful.
- <u>The greater the size of a habitat and the greater the</u> <u>biodiversity, the healthier a habitat will tend to be.</u>
  - The most effective ways to manage a habitat are to increase the size of the habitat and minimize native species losses.



Agricultural Sci